Fri, Oct 31, 2014 07:01
HomeMost Recent NewsLone Star Business BlogContact Us
Advertise with Texas Business
Patent: A Robot Tattoo Artist
Patent: A Robot Tattoo Artist | hou_txbz, robot, tattoo, tattoo removal, Phillip L. Gildenberg, patent, 8036448, Methods And Devices For Tattoo Application And Removal, Restoration Robotics,

U.S. Patent 8,036,448 for “Methods And Devices For Tattoo Application And Removal.”

Texas Business Patent Of The Day:  A Houston man has designed a robot that will apply tattoos, or remove tattoos.

Phillip L. Gildenberg of Houston received U.S. Patent 8,036,448 for “Methods And Devices For Tattoo Application And Removal.”

Gildenberg filed for the patent on December 27, 2007.  

Restoration Robotics of Mountain View, California is the patent assignee.

Gildenberg’s invention involves the use of a robotic system guided by control of a graphics capable computer in order to perform various types, including artistic, recreational, cosmetic, or therapeutic tattooing, or tattoo removal.

 A tattoo is a design created on the skin, or sometimes other tissue, by the injection of pigment into the dermal layer, so it is visible through the surface.

The most common type of tattooing device is a vibrating needle controlled by the operator as a hand-held tool that vibrates rapidly, ordinarily between 50-3,000 times per minute, to inject non-water soluble pigment in the desired pattern.

 If the injection is too deep, it may not be easily visible through the surface or may look blurred.

If it is too superficial, it may not be held in proper position and may migrate to produce a blurred image or be gradually removed to produce a faded image as the dermis is recycled.

Usually, the pattern is first outlined free-hand with a stencil in dark colored ink, and then the colors are filled in.

Ordinarily, the tattooing needle injects a single color at a time, and repeated applications are necessary to produce a multi-colored pattern. Tattoo designs may be small and localized, or may be any size up to covering most or the entire skin surface.

In some cultures and in more primitive times, the pigment is placed on the skin and pushed in by needles or other relatively sharp objects held by hand, or pulled into the skin on thread that is passed into and out of the surface on a curved needle.

Some attempts have been made to automate placing of temporary decorations or tattoos on a body surface. For example,  one method is a a skin decoration apparatus and method for placing temporary multi-colored designs using Wirejet  technology. The decoration is produced by a print head comprising Wirejet  nozzles, which spray biocompatible inks or dyes onto the skin and last for at least several weeks. The Wirejet may be connected to a scanning mechanism to scan in one, two, or three directions. The decorations can be applied to contoured skin surfaces following flattening against a screen of intersecting wires, by robotic arm, or using z-axis technology. A computer stores the desired design and controls the firing of the Wirejet to produce the desired decoration.

Placing of permanent conventional tattoos generally involves using a needle that is controlled by the tattoo artist, it is inexact, tedious, time consuming, laborious, and consequently expensive. Similarly, despite certain advancements in a laser tattoo removal technology, conventional tattoo removal is done manually by a person, requires multiple sessions and suffers from many shortcomings.

According to the patent documents, Gildenberg’s invention uses to robot to tattoo or to remove the tattoo.  The provided systems and methods could be used for all kinds of tattooing, including cosmetic, therapeutic, dermatological, as well as recreational or artistic tattooing.

According to one aspect of the present invention, a robotic system for creating tattoos on a body surface is provided. The robotic system comprises a robotic arm; a tattoo tool carried by the robotic arm, the tattoo tool is adapted to be maneuverable by the robotic arm and operable to deliver a pigment for creating a tattoo image on a body surface; a processor configured to receive and process images of the body surface; a controller operatively associated with the processor and configured to maneuver the robotic arm based, at least in part, on the processed images of the body surface, wherein the tattoo tool comprises a penetrating distal end, and one or both of the processor and controller are configured to cause the penetrating distal end of the tattoo tool to puncture the body surface and to penetrate into tissue to create the tattoo image.

The robotic system may further comprise an image acquisition device, such as one or more video, digital or analog cameras. In some embodiments, the system further comprises a plurality of color reservoirs each containing a color pigment, and the tattoo tool may be selectively coupled to any of the plurality of reservoirs to control colors of the desired tattoo image. In further embodiments the robotic system of the present invention comprises a user interface that allows a system operator to input various instructions relating to many features of the desired tattoo image. A collection of the tattoo images may be associated with the processor of the robotic system of the present invention.

According to another aspect of the present invention, the method is provided for creating a tattoo image on a body surface using a robotic system. In one embodiment, the method comprises maneuvering a robotic arm to position a tattoo tool carried by the robotic arm proximate a location on a body surface where a tattoo image is intended to be created; and using a substantially automated process to cause a penetrating distal end of the tattoo tool to puncture the body surface and penetrate a desired depth in a body tissue to deliver a pigment to create the tattoo image. The method may further comprise obtaining an image of a body surface to be tattooed and registering the body surface to be tattooed with the robotic system. Registering the body surface to be tattooed with the robotic system may be accomplished by means of at least one fiducial mark. The fiducial mark may comprise any natural body landmark, such as pre-existing tattoos, birth marks, scars, moles, etc., or fiducial mark may be artificially created, for example, by inking or taping it to the relevant body surface. The fiducial mark or marks may be visualized by any appropriate image acquisition device to register the location of the fiducial mark to obtain fine control of the tip of the tool.

In some embodiments, the method may further comprise identifying a desired tattoo image. Identifying the tattoo image may be accomplished by many different means, for example, by selecting the tattoo image from a collection of images associated with or stored in the robotic system itself, or downloading a desired image from an external source (disk, internet, scanning), or creating a new desired tattoo image. The identified tattoo image may be further modified, as desired, for example, by changing size, shape, colors and other features to fit a particular location on a body surface, or simply to satisfy the taste of the user. A user interface could be used for modifying a desired image. The registration of the body surface with the robotic system may be continuously updated. For example, a portion of the tattoo image already applied may be used as a fiducial mark as placement of the tattoo image progresses.

In yet another aspect of the present invention, a method is provided for color matching at least one element of a new tattoo to a field on a body surface. In one embodiment, the method comprises obtaining an image of the body surface to be tattooed; identifying a field in the obtained image to which a color of at least one element of a new tattoo is to be matched; processing the obtained image to determine a color spectrum of the field; and color matching the at least one element of the new tattoo to one or more colors of the color spectrum of the field. The obtained image may be registered with a robotic system and the color matched new tattoo is placed on a body surface using the robotic system. The method may further comprise, for example, registering the three-dimensional localization of the fiducial mark to the robotic arm. In various embodiments, the field to which a color to be matched may be a pre-existing tattoo or any portion of it, and the new tattoo may be an extension, modification or enhancement of the pre-existing tattoo. Further, in some embodiments, the body surface may comprise a scar tissue or tissue with a deficient or abnormal color, the field may comprise a normal skin color, and color matching of the at least one element of the new tattoo to the field comprises adding one or more colors to the scar tissue or tissue with a deficient or abnormal color to simulate the normal skin color.

According to further aspect of the present invention, a system for color matching of at least one element of a new tattoo to a field on a body surface comprises an image acquisition device and an image processor configured for performing a color matching method of the present invention. In one embodiment, the image acquisition device is one or more cameras, such as any commercially available cameras. Instead of a camera, it could be a video recording device (such as a camcorder) or any other image acquisition device. Stereo imaging devices are very useful in the present invention, but other measuring devices may be employed to maintain a three-dimensional perspective of the skin surface. Similarly, while it is preferred that the image acquisition device be a digital device, it is not necessary. It could be, for example, an analog TV camera that acquires an initial image which is then digitized into a digital image for further use in the method of the present invention. The image processor may comprise any device programmed and configured to perform the color matching method according to the present invention. One non-limiting example of a suitable image processor is any type of personal computer  (PC). Alternatively, the image processor may comprise an Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA).

In accordance with yet another aspect of the present invention, an image processor for color matching at least one element of a new tattoo to a field on a body surface may be programmed, for example, with a software configured for receiving an image of a body surface to be tattooed, the image including a field on the body surface to which a color of at least one element of a new tattoo is to be matched; processing the image to analyze a color spectrum of the field; and color matching the at least one element of the new tattoo to one or more colors of the color spectrum of the field.

Moreover, the present invention also provides a robotic system for removing tattoos from a body surface. In one embodiment, the robotic system comprises a robotic arm; and a tattoo removal tool carried by the robotic arm, the robotic arm being maneuverable so that the tattoo removal tool may be placed proximate an existing tattoo on the body surface, the tattoo removal tool being operable using a substantially automated process to remove a tattoo image from the body surface. In some exemplary embodiments, the tattoo removal tool may comprise a laser, or a cannula configured for controlled delivery of a pigment. The robotic system for tattoo removal may further comprise a processor configured to analyze colors of the existing tattoo and colors of a skin in an area adjacent to the existing tattoo. In addition, it may include an image acquisition device configured for acquiring images of the existing tattoo and a skin in an area adjacent to the existing tattoo.

In accordance with still further aspect of the present invention, a method is provided for removing tattoos from a body surface using a robotic system. In one embodiment, the method comprises maneuvering a robotic arm to position a tattoo removal tool carried by the robotic arm proximate a location of an existing tattoo on a body surface; and operating the tattoo removal tool using a substantially automated process to remove at least a portion of the existing tattoo from the body surface. In some embodiments of the method of the present invention, removing at least a portion of the existing tattoo comprises applying a neutralizing pigment to the at least a portion of the existing tattoo to match the at least a portion of the existing tattoo with a color of a skin adjacent to the at least a portion of the existing tattoo.