Sun, Aug 31, 2014 03:33
HomeMost Recent NewsLone Star Business BlogContact Us
Advertise with Texas Business
Patent: An Arctic Platform For Drilling
Patent: An Arctic Platform For Drilling | hou_txbz, The Woodlands, Benton F. Baugh, Craig Watson, Keith K. Millhelm, Ali G. Kadaster, 8226326, arctic platform,

Benton F. Baugh of Houston, Craig Watson of Houston, Keith K. Millhelm of The Woodlands and Ali G. Kadaster of The Woodlands received U.S. Patent 8,226,326 for “Arctic Platform.”

Texas Business reports:  Four Texans devised a way to make arctic platforms for arctic drilling.

Benton F. Baugh of Houston, Craig Watson of Houston, Keith K. Millhelm of The Woodlands and Ali G. Kadaster of The Woodlands received U.S. Patent 8,226,326 for “Arctic Platform.”

The four applied for the patent on August 11, 2011.

The patent assignee is Anadarko Petroleum Corporation of The Woodlands.

The invention relates generally to the field of oil and gas drilling and production. In a specific, non-limiting embodiment, the invention comprises a system and method of drilling oil and gas wells in arctic, inaccessible or environmentally sensitive locations without significantly disturbing an associated ground surface.

 The drilling and maintenance of land oil and gas wells requires a designated area on which to dispose a drilling rig and associated support equipment. Drilling locations are accessed by a variety of means, for example, by roadway, waterway or another suitable access route. In particularly remote locations, access to a drilling site is sometimes achieved via airlift, either by helicopter, fixed wing aircraft, or both.

Some potential drilling and production sites are further constrained by special circumstances that make transportation of drilling equipment to the drilling site especially difficult. For example, oil and gas reserves may be disposed in locales having accumulations of surface and near-surface water, such as swamps, tidal flats, jungles, stranded lakes, tundra, muskegs, and permafrost regions. In the case of swamps, muskegs, and tidal flats, the ground is generally too soft to support trucks and other heavy equipment, and the water is generally too shallow for traditional equipment to be floated in. In the case of tundra and permafrost regions, heavy equipment can be supported only during the winter months.

Moreover, certain production sites are disposed in environmentally sensitive regions, where surface access by conventional transport vehicles can damage the terrain or affect wildlife breeding areas and migration paths. Such environmental problems are particularly acute in, for example, arctic tundra and permafrost regions. In these areas, road construction is frequently prohibited or limited to only temporary seasonal access.

For example, substantial oil and gas reserves exist in the far northern reaches of Canada and Alaska. However, drilling in such regions presents substantial engineering and environmental challenges. The current art of drilling onshore in arctic tundra is enabled by the use of special purpose vehicles, such as Rolligons.TM. and other low impact vehicles that can travel across the arctic tundra, and by ice roads that are built on frozen tundra to accommodate traditional transport vehicles. Ice roads are built by spraying water on a frozen surface at very cold temperatures, and are usually about 35 feet wide and 6 inches thick. At strategic locations, the ice roads are made wider to allow for staging and turn around capabilities.

Land drilling in arctic regions is currently performed on ice pads, the dimensions of which are about 500 feet on a side; typically, the ice pads comprise 6-inch thick sheets of ice. The rig itself is built on a thicker ice pad, for example, a 6- to 12-inch thick pad. A reserve pit is typically constructed with about a two-foot thickness of ice, plus an ice berm, which provides at least two feet of freeboard space above the pit's contents. These reserve pits, sometimes referred to as ice-bermed drilling waste storage cells, typically have a volume capacity of about 45,000 cubic feet, suitable for accumulating and storing about 15,000 cubic feet of cuttings and effluent. In addition to the ice roads and the drilling pad, an arctic drilling location sometimes includes an airstrip, which is essentially a broad, extended ice road formed as described above.

Ice roads can run from a few miles to tens of miles or longer, depending upon the proximity or remoteness of the existing infrastructure. The fresh water needed for the ice to construct the roads and pads is usually obtained from lakes and ponds that are generally numerous in such regions. The construction of an ice road typically requires around 1,000,000 gallons of water per linear mile. Over the course of a winter season, another 200,000 gallons or so per mile are required to maintain the ice road. Therefore, for a ten-mile ice road, a total of 2,000,000 gallons of water would have to be picked up from nearby lakes and sprayed on the selected route to maintain the structural integrity of the ice road.

An airstrip requires about 2,000,000 gallons of water per mile to construct, and a single drill pad requires about 1,700,000 gallons. For drilling operations on a typical 30-day well, an additional 20,000 gallons per day are required, for a total of about 600,000 gallons for the well. A 75-man camp requires another 5,000 gallons per day, or 150,000 gallons per month, to support. Sometimes, there are two to four wells drilled from each pad, frequently with a geological side-track in each well, and thus even more water is required to maintain the site. Thus, for a winter drilling operation involving, for example, 7 wells, 75 miles of road, 7 drilling pads, an airstrip, a 75-man camp, and the drilling of 5 new wells plus re-entry of two wells left incomplete, the fresh water requirements are on the order of tens of millions of gallons.

Currently, arctic land exploration drilling operations are conducted only during the winter months. Roadwork typically commences in the beginning of January, simultaneous with location building and rig mobilization. Due to the lack of ice roads, initial mobilizations are done with special purpose vehicles that are suitable for use even in remote regions of the arctic tundra.

Drilling operations typically commence around the beginning of February, and last until the middle of April, at which time all equipment and waste-pit contents must be removed before the ice pads and roads melt. However, in the Alaskan North Slope, the tundra is closed to all traffic from May 15 to July 1 due to nesting birds. If the breakup is late, then drilling prospects can be fully tested before demobilizing the rig. Otherwise, the entire infrastructure has to be removed, and then rebuilt the following season.

From the foregoing, it is clear there are several drawbacks associated with current arctic drilling and production technology. For example, huge volumes of water are pumped out of ponds and lakes and then allowed to thaw out and become surface run-off again. Also, the ice roads can become contaminated with lubricant oil and grease, antifreeze, and rubber products. In addition to the environmental impact, the economic costs associated with arctic drilling can be prohibitively high. Exploration operations can be conducted only during the coldest times of the year, which typically lasts less than 4 or 5 months. Thus, using ice pads, actual drilling and testing can be conducted in a window of only two to four months or less, and actual production and development can occur during less than half the year. At the beginning of each drilling season, the ice roads and pads must all be rebuilt, and equipment must again be transported to and removed from the site, all at substantial financial and environmental cost. As for the commercial development of hydrocarbons in the arctic tundra, the current state of the art requires the use of a gravel pad for year round operations. When production activities are completed (for example, at the end of the lifecycle of the field), the gravel pads must be removed and the site remediated. Such remediation efforts can be very costly and difficult to accomplish.

As a result, the four Texans devised a method of constructing a drilling or production platform is provided, the method including: drilling a post hole into a ground surface; inserting a support post into said post hole, wherein said support post has an adjustable shoulder member; adding a fluid slurry to said post hole to freeze said support post within an interior region of said post hole; disposing a modular platform section on top of said adjustable shoulder member to establish a platform deck surface; and adjusting said adjustable shoulder member so that said platform deck surface is disposed substantially level.

According to a further aspect of the invention, a method of constructing a drilling or production platform is provided, the method including: drilling or hammering a support post into a ground surface, wherein said support post further comprises an adjustable shoulder member; disposing a modular platform section on top of said adjustable shoulder member to establish a platform deck surface; and adjusting said adjustable shoulder member so that said platform deck surface is disposed substantially level.

According to a further aspect of the invention, a method of constructing a platform suitable for drilling and producing oil, gas and hydrate reserves is provided, the method including: disposing a platform section atop a plurality of support posts; disposing two substantially parallel support beam sections between two of said support posts; and disposing a deck section atop said two substantially parallel support beams to provide a bridging support means between said two substantially parallel beams.

According to a further aspect of the invention a method of constructing a drilling or production platform is provided, the method including: providing a first platform section supported by support posts, wherein each of said support posts are disposed proximate to the corners of said first platform section; providing a second platform section, wherein said second platform section further comprises a hooking member that hooks onto a first side of said first platform section; providing a plurality of support posts to support a side of said second platform section disposed opposite said first side of said second platform section; and providing a third platform section, wherein said third platform section further comprises a hooking member that hooks said second platform section.

According to a still further aspect of the invention, a method of assembling a plurality of interlocking modular platform sections useful for supporting drilling equipment on a deck surface is provided, the method including: disposing a first modular platform section and a second modular platform section atop a plurality of platform support posts; disposing a hook and hook receiving member proximate an interface formed between said first platform section and said second platform section, wherein said hook is disposed along a side portion of said first platform section, and said hook receiving member is disposed on a side portion of said second platform section, and thereby.

According to a still further aspect of the invention, a method of communicating utilities between a deck section and a platform section of a drilling or production platform is provided, the method including: disposing a deck section atop a platform section; disposing one or more holes in a top surface of said deck section to permit utility communication between an interior region of said deck section and a deck surface disposed atop said deck section; and disposing one or more holes between a lower surface of said deck section and an upper surface of said platform section.

According to a still further aspect of the invention, a method of heating a drilling or production platform support post is provided, the method including: disposing a fluid conduit through a body portion of said support post; disposing a hollow fluid transfer member around or near an outer surface of said support post, wherein said fluid conduit disposed in a body portion of said support post is in fluid communication with said hollow fluid transfer member; and drawing a cooling or warm fluid into said fluid conduit and passing said fluid through said hollow fluid transfer member.

According to a further aspect of the invention, a method of removing a drilling or production platform support post is provided, the method including: disposing a fluid conduit through a body portion of said support post; disposing a hollow fluid transfer member around or near an outer surface of said support post, wherein said fluid conduit is disposed in fluid communication with said hollow fluid transfer member; drawing a warm fluid into said fluid conduit and passing said fluid through said hollow fluid transfer member to heat the surrounding ground; and applying a pulling force to said support post to pull said support post from the ground.

According to a still further aspect of the invention, a method of removing a drilling or production platform support post is provided, the method including: disposing a fluid conduit through a body portion of said support post; disposing a hollow fluid transfer member around or near an outer surface of said support post, wherein said fluid conduit is in fluid communication with said hollow fluid transfer member; disposing a vent between said fluid conduit and a surrounding ground surface using jets or ports; drawing a fluid or gas into said fluid conduit and passing said fluid through said hollow fluid transfer member, through said vent and out to the surrounding ground surface; and applying a pulling force to said support post to pull said support post from the ground.

According to a still further aspect of the invention, a method of adjusting the height of a modular drilling or production platform section is provided, the method including: disposing a modular platform section atop an adjustable shoulder nut disposed on a support post, wherein a top portion of said support post further comprises a lift receiving means; disposing a lifting means proximate to said lift receiving means, and then mutually engaging said lifting means and said lift receiving means; lifting said modular platform section off of said adjustable shoulder nut and then supporting said modular platform section using a support means; raising said adjustable shoulder nut; and replacing said modular platform section atop said adjustable shoulder nut using said support means.

According to a still further aspect of the invention, a method of sealing an intersection formed between a plurality of interlocked platform modules, the method including: disposing four interlocked platform modules so that a four-way intersection is formed therebetween; disposing a sealing member over said four-way intersection, wherein said sealing member comprises a body member and a plurality of leg members; and augmenting the seal using a deformable sealing material.