Fri, Oct 24, 2014 09:40
HomeMost Recent NewsLone Star Business BlogContact Us
Advertise with Texas Business
Patent: To Change the Maze of Office Layouts, Easily
Patent: To Change the Maze of Office Layouts, Easily | hou_txbz, Magnolia, W. Frank Little, patent, 8191331, demountable, paneling, system,

W. Frank Little of Magnolia, Texas, recently received U.S. Patent 8,191,331 for “Demountable Paneling System.”

Texas Business Patent of the Day:  A Texas man has devised a way to quickly rearrange office space into new configurations.

W. Frank Little of Magnolia, Texas, recently received U.S. Patent 8,191,331 for “Demountable Paneling System.”

Little applied for the patent more than three years ago on November 14, 2008.

Little’s invention is in the field of building and facility walls and ceiling systems and associated architectural elements, according to the patent documents.

More particularly, the present invention is in the field of wall and ceiling partitions having architectural elements which are demountable and reusable, and that have a seamless surface between the architectural elements when the wall and ceiling partitions are in place. 

A variety of removable and reusable wall systems are available for use in partitioning a building's interior space. The prior known wall systems each attempt to embody a subset of the overall objects and advantages that the industry seeks in such assemblies, often for a specific building application. The structure of such assemblies range from floor-to-ceiling full height wall partitions to modular-office-cubical-type panel assemblies having partial height walls. 

Removable, full height wall partition assemblies are often referred to as "demountable" wall systems.  Current demountable wall systems are designed separately from the buildings they are used in, and are incorporated separately into the interior space of the building as an accessory, after the building is completed. 

Many limitations may be found in prior art demountable wall systems. The component parts of which are inherently sophisticated, complex, and intricate. They require custom prefabrication of processed-raw-material-stock. They require elaborate warehousing, stocking, inventorying of numerous parts many of which become obsolete over time. Each manufacturer must train and then maintain specialty crews in every major city in order to site assemble, disassemble, and reassemble their particular and unique demountable wall and system.

Prior art demountable walls must create specialized custom doors, windows, door and window hardware, electrical, voice and data, plumbing, and the like which together dictate a complex problem prone system. All of the prior art systems have dimensional limitations of height and restricted flexibility in length due to prefabrication. Once a height is selected to fit a certain building it is often not usable in another building because of seemingly minor differences in height or most often in the degree of slope of the floors which the naked eye perceives as level but the demountable wall panels can not tolerate. Prior art wall system manufacturers attempt to overcome this limitation by adding more variety of product sizes which actually magnifies the above limitations because it magnifies the problems associated with complexity, inventorying, obsolesce, assembly crew training, and ever increasing costs associated with these limitations. The cost of prior art demountable wall systems is very high ($80 to $200 per lineal foot plus accessories compared to standard fixed wall cost of about $22 per lineal foot) and therefore the use of prior art demountable walls is not wide spread. If there were a wide spread use of demountable walls the impact on our environment and non-renewal resources would be very positive because the standard fixed walls do not accommodate reconfiguration. Therefore the standard fixed walls must be demolished and sent to special toxic waste landfills (decomposing gypsum releases a toxic gas) and new walls must be constructed using more of our non-renewal natural resources. 

Another limitation of prior art demountable wall and ceiling systems is the resulting seams and gaps that occur between the component panels that make up the walls and ceiling. Architects and designers object strongly to these aesthetically unacceptable and often imbalanced sectioning of the architecture. Prior art demountable walls are limited to interior use, few, if any, are fire rated nor are they load bearing. 

Since commercial buildings, particularly office buildings are often remodeled to accommodate changing space requirements, tenancy, and design tastes, it would be advantageous to have an interior and exterior space partitioning system which allows disassembly and ready reassembly and thus permits the general reuse of the elements of the system. This permits savings in material and downtime. It would be beneficial to have a demountable wall system that allowed the removal, reuse, and relocation of wall system elements, including not only wall panels and studs but also electrical and plumbing elements and door and window elements. The availability of a wall system embodying such recyclable elements would reduce waste and the cost of altering a building's space. 


Little’s invention provides a wall and ceiling system which permits the general reuse of the elements of the system, thereby reducing material wastes and the cost of altering a building's space.    . 

It is a non-load bearing wall partition system, the elements of which are demountable and reusable, and which may be assembled or reassembled using recyclable elements to provide a fastener-free surface, and may be finished to further provide a seamless as well as fastener-free surface. 

More specifically, the present invention is a demountable wall assembly for partitioning room space between an overhead and a floor comprising wall surfaces that are fastener-free and which may be smooth and seamless when erected, and the structural elements of which are reusable after demounting. The wall assembly has two walls arranged in planar congruence and separated by spacers, which defines an inner wall space enclosed between the interior surfaces of the walls. This configuration also provides at least one exterior wall surface, which is a fastener-free wall surface, and may provide a second exterior wall surface which may or may not be fastener free. The surfaces are vertically positioned between and interface with the overhead (ceiling) and floor of the space to be partitioned. The fastener-free wall surface wall is made up of at least one removable wall panel. A wall panel may be sheet rock or some other type of panel suitable for use as a wall. The interior space formed between the two exterior walls may provide a space for the drop of modularized electrical, phone, and data lines at appropriate places throughout the interior space serviced by the demountable wall system. 

A top spacer (variously called a header track, top plate, top sill, etc.) at the top of the wall assembly provides an interface between the overhead and other wall elements, e.g., internal spacers and wall panels. Similarly, a bottom spacer at the bottom of the wall assembly (variously called a bottom plate, bottom sill, etc.) provides an interface between the floor and other wall elements. The top spacer and bottom spacer are removably fixed to the overhead and floor respectively using any of a number of removable fasteners and releasable adhesives known to the ordinarily skilled artisan. Therefore, in the practice of the present invention, after being fixed in place, the top bottom spacers are removable and reusable. Similarly, top spacers and bottom spacers are removably fixed to the other wall elements using any of a number of removable fasteners and releasable adhesives known to the ordinarily skilled artisan. In those applications where removable fasteners are not to be used to long-term mount the other wall elements to the top or bottom spacer, or to each other, releasable adhesives may be substituted. As may be readily apparent, the mounting and demounting of the wall's various elements, (including top and bottom spacers, internal spacers, wall panels, trim, junction boxes, wiring, etc.) does not substantially impact their suitability for reuse. 

A feature of the wall assembly of the present invention is an interior spacer which interfaces with the interior surfaces of the two walls and provides rigidity and support to the expanse of the wall, or an attachment interface at the perimeter edge of adjacent wall elements (panels). Interior wall spacers may run vertically, horizontally, or in any orientation required to accomplish their purpose. Internal spacers suitable for use in the wall assembly of the present invention includes any of the variety of wall studs typical of the building trades, and typically having a width of about 2.5 inches, and including a wooden 27W, or a removable head track and similar lumber and hardware. 

A further feature of the present wall assembly is that the exterior surface of at least one of the walls is a fastener-free wall surface. A fastener-free wall surface is an exterior wall surface that has no fasteners in the exposed (i.e., not covered by trim or molding) surface of the wall. The second wall of the present invention may be a wall with a fastener-free exterior surface, an unfinished structural (bearing) wall or the like. In the typical practice of the present invention a wall having a fastener-free surface comprises a plurality of removable wall panels juxtapositioned at a perimeter edge to form a planar surface. An aspect of the fastener-free wall surface feature of the present invention is that the joint between the juxtapositioned panel edges may be treated as described herein to render the fastener-free surface also substantially smooth and seamless. Specifically, the joints may be filled with a releasable caulk or covered with a removable tape to provide a fastener-free surface that is substantially smooth when finished, and the caulk or tape being removable without substantial damage to the integrity of the wall panel. This permits the wall panels to be reused. 

Unused wall panels may be inventoried and stored between redesigned wall systems providing further sound-deadening between the partitions and further structural support to the top and bottom spacers and the wall system generally. Alternatively, previously used wall panels may be moved to other sites for reinstallation.