Sat, Oct 25, 2014 21:53
HomeMost Recent NewsLone Star Business BlogContact Us
Advertise with Texas Business
Patent: To Clean Dirty Water With Tiny Particles
Patent: To Clean Dirty Water With Tiny Particles | hou_txbz, Tianping Huang, Spring, James B. Crews,Willis, 8226830,wastewater, purification, nanoparticle,

Tianping Huang of Spring, Texas, and James B. Crews of Willis, Texas, received U.S. Patent 8,226,830 earlier this week for “Wastewater Purification with Nanoparticle-Treated Bed.”

Texas Patent of the Day:  Two Texas residents have devised a way to purify water contaminated from energy wells.

Tianping Huang of Spring, Texas, and James B. Crews of Willis, Texas, received U.S. Patent 8,226,830 earlier this week for “Wastewater Purification with Nanoparticle-Treated Bed.”

The two men applied for the patent more than four years ago on April 29, 2008.

The patent assignee is Baker Hughes Inc. of Houston.

 Huang’s and Crews’ invention relates to methods and compositions for removing contaminants from liquids, such as wastewater, and more particularly relates, in one non-limiting embodiment, to methods and compositions for removing contaminants from wastewater using particle packs that have been treated with nano-sized particles, according to the patent documents.

Many methods and processes are known to clean, purify, clarify and otherwise treat fluids for proper disposal, consumption, use, and other needs. These methods include, but are not necessarily limited to, centrifugation and filtration to remove particulates, chemical treatments to sterilize water, distillation to purify liquids, decanting to separate two phases of fluids, reverse osmosis to desalinate liquids, electrodialysis to desalinate liquids, pasteurization to sterilize foodstuffs, and catalytic processes to convert undesirable reactants into useful products. Each of these methods is well-suited for particular applications and typically a combination of methods is used for a final product. 

There are many different known technologies available for the sterilization of liquid. Adsorption, chemical treatments, ozone disinfection, and ultraviolet (UV) irradiation all perform very well for the removal of pathogenic microbes. However, each of these technologies has limitations, including overall efficacy, initial capital cost, operating cost, byproduct risk, necessary pre-treatment of liquid, hazardous compounds used or produced, and which thus must be properly disposed of, and other limitations. 

Although chemical methods are the most widespread in use, they have a number of shortcomings. Such drawbacks include increasing microbiological adaptation to their destructive effects, safety hazards associated with chlorine use and storage, and environmental impact. UV is a popular treatment, but the liquid must be clear in order for it to be effective, and it does not break down any biofilm formation; it is also very expensive to install and operate. In industrial and municipal applications such as water and wastewater plants, the three most widely used methods of liquid sterilization are ozone treatment, chlorine treatment, and UV irradiation. 

Desalination of liquids is highly useful for drinking water, biological fluids, medicines, chemicals, petroleum and its derivatives, and many other liquids. In addition, desalination of water would be beneficial since less than 0.5% of the Earth's water is directly suitable for human consumption, agricultural, or industrial uses. Consequently, desalination is finding increasing favor to produce potable water from brackish groundwater and seawater since it makes the other approximately 99.5% of the water available. There are five basic desalination methods: thermal, reverse osmosis, electrodialysis, ion exchange, and freezing. Thermal and freezing processes remove fresh water from saline leaving behind concentrated brine. Reverse osmosis and electrodialysis employ membranes to separate salts from fresh water. Ion exchange involves passing salt water over resins which exchange more desirable ions for less desirable dissolved ions. Only thermal and reverse osmosis processes are currently commercially viable. Even so, these two methods tend to be prohibitive due to their expense. 

There is always a need to develop new apparatus and methods that will help perform these methods and processes more cost effectively than their traditional counterparts. In the area of liquid purification, any technology that can lower the overall cost, simplify the process, and improve efficiencies would be very advantageous. It would thus be desirable if methods and/or structures would be devised to purify liquids, such as wastewater, using simple methods and devices. 

Crews’ and Huang’s invention is a method for purifying fluids that involves contacting a liquid with a particle pack containing substrate particles such as sand and a comparatively smaller particulate additive. The particulate additive may be nanoparticles having a mean particle size of 1000 nm or less. The nanoparticles may be alkaline earth metal oxides, alkaline earth metal hydroxides, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides, piezoelectric crystals, and/or pyroelectric crystals. The nanoparticles are present in an amount effective to purify the liquid. 

There is additionally provided in another non-limiting embodiment a particle pack for purifying fluids that includes a plurality of substrate particles treated with a particulate additive, which are comparatively smaller than the substrate particles. The particles in the particle pack may include, but are not necessarily limited to, sand, gravel, ceramic beads, glass beads, and combinations thereof. The particulate additive may have a mean particle size of 1000 nm or less. The nanoparticulate additive may include, but not necessarily be limited to, alkaline earth metal oxides, alkaline earth metal hydroxides, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides, piezoelectric crystals, and/or pyroelectric crystals. The nanoparticles may be present in an amount ranging from about 1 part particulate additive for 200 to 5000 parts by weight of particles in the particle pack. 

The particulate additives, also referred to herein as nano-sized particles or nanoparticles (e.g. MgO and/or Mg(OH).sub.2, and the like), appear to fixate, bind up, or otherwise capture contaminants, such as clay and non-clay particles, including charged and non-charged particles. Due at least in part to their small size, the surface forces (e.g. van der Waals and electrostatic forces) of the nanoparticles help them associate, group or flocculate the tiny contaminant particles together in larger collections, associations or agglomerations. Such groupings or associations help capture the contaminants in place and keep them from moving and passing through with the liquid, resulting in a purified liquid. In many cases, the purifying ability of the particle pack may be improved by use of nano-sized particulate additives that may be much smaller in size than the contaminants. 

The addition of alkaline earth metal oxides, such as magnesium oxide; alkaline earth metal hydroxides, such as calcium hydroxide; transition metal oxides, such as titanium oxide and zinc oxide; transition metal hydroxides; post-transition metal oxides, such as aluminum oxide; post-transition metal hydroxides; piezoelectric crystals and/or pyroelectric crystals such as ZnO and AlPO.sub.4, to an aqueous fluid, a solvent-based fluid such as glycol, or oil-base fluid, e.g. mineral oil, may be used to treat the particle pack, such as a sand bed, which in turn is expected to purify, clarify and otherwise clean the fluid.